Tonkin+Taylor

How an evidence based approach changed a WASH risk project

Glen McIntosh | Senior Asset Manager

Tonkin+Taylor

Titr Tonkin+Taylor

Title Tonkin+Taylor

Tonkin+Taylor

Pacific Island drivers and considerations

- Community health and wellness
- Climate change resilience
- Protection of fragile ecosystems
- Sustainable seafood sourcing
- Sustainable tourism
- Cultural values & local context
- Competing demands for investment funding
- Bringing the community along the journey to outcomes

Prioritisation & alignment of WASH investments to community outcomes is crucial...

SUSTAINABILITY

Sustainable Coastal Fisheries in the Pacific Depends on **Improving Sanitation**

By Catherine Wilson

Water, water, everywhere, but not a drop to drink: Adapting to life in climate change-hit Kiribati

Pacific Islands

RELATED

LATEST NEWS

Overnight Financing Rate (SOI

The risk factors are serious and increasing...

and more complex to understand...

Global movement to using risk frameworks to drive better engineering outcomes...

- Enhanced asset understanding
- ✓ Robust prioritisation
- ✓ Informed decision making
- ✓ Better understanding of ROI
- ✓ Expecting the unexpected...

Clients shifting to a risk-based approach...

And as a result are delivering better outcomes much more cost effectively...

Licencing for improvement of wet weather overflows

A proposal for better environmental and community outcomes

"In the tent"

- ✓ Community
- ✓ Stakeholder
- ✓ Regulatory
- ✓ Political

QUU SEWERAGE SYSTEM

EFFECTS BASED PLANNING – ACTION

PLAN

Merri Creek improvement project

Planned 5 year capital investments...

Melbourne Water

Project	Estimated Project Cost
Yarra Lower, Merri Creek Lower, Merri Creek, Queens Pde to Bakers Rd footbridge	\$567K
YAR_Curly Sedge Creek, Craigieburn Grasslands	\$228K
Merri Ck Faulkner Reservoir	\$187K
Merri Creek Aitken confluence	\$200K
Malcolm Creek	\$52K
Merri Creek Broadhurst to Lynch	\$149K
Community Grants	\$71K
Corridors of Greens	\$72K
Stream Frontage Management Program	\$13K
Living Rivers Program	\$1.4M
Minor works	
Revegetation	
Weed management	\$1.8M
Grass cutting Desilting	
Debris removal	
Stabilisation	
TOTAL	\$4.7M

Yarra Valley Water

SEPP Compliance Project	Estimated Project Cost
Bell St	\$2.7M
St Georges Rd	\$4.5M
Reservoir	\$1.4M
Gilbert Rd	\$2.5M
Northcote	\$1.0M
Merlynston	\$7.0M
Preston Diversion	Recently completed
Councils / MCMC	\$19.1M

	Perception Study (2014)	Legislation SEPP	Water – HWS MCMC	outcome	
PUBLIC HEALTH					
Primary contact recreation	N	Υ	N	N	
Secondary contact recreation	N	Υ	NOT CLEARLY DEFINED	N	
Passive recreation - liveability	Υ	Υ	Υ	Υ	
<u>ENVIRONMENT</u>					
Native Fish	Υ	Υ	Υ	MAINTAIN	
Frogs	Υ	Υ	Υ	AND/OR	
Macroinvertebrates	Υ	Υ	Υ	ENHANCE	
Vegetation	Υ	Υ	Υ	BIODIVERSITY	
<u>AESTHETICS</u>					
Vegetation	Υ	Υ	Υ	Υ	
Odours	Υ	Υ	Υ	Υ	
Water colour / appearance	Υ	Υ	Υ	Υ	
Water turbidity / murky water	Υ	Υ	Υ	N	
Accessibility	Y	N	Υ	Υ	
Absence of Litter	Υ	Υ	Υ	LITTER LOAD REDUCED	

Community

Current

Melbourne

Agreed practical

Evidence based approach for outcomes

Science/evidence to understand community outcome effects & risk...

"To achieve healthy living streams flowing through attractive environments which provide habitat for native animals..."

Science/evidence to understand community outcome effects & risk...

Science/evidence to understand sources, risk & offsetting opportunities

Science/evidence to understand sources, risk & offsetting opportunities

Drain ID	Drain Name	Human Faecal	E.coli	Ammonia	Pesticides	Heavy Metals	TPH	Conductivity	Visual/Litter	Further investigation
1	Wallara Waters Drain									No
2	O'Herns Drain									No
3	Epping Drain									No
4	Ainslie Rd Drain	✓		✓						Yes
5	Jessica Rd Drain	✓	✓	✓		√	✓		✓	Yes
6	Barry Rd Drain					✓				Yes
7	Somerset Drain		✓			✓	✓	✓		Yes
8	Thomastown West Drain	✓			✓					Yes
9	Thomastown Main Drain									No
10	Merrylands Drain									No
11	Merlynston Creek									No
12	Elizabeth St Main Drain	✓	✓				✓			Yes
13	The Avenue Main Drain									No
14	Preston Main Drain				✓		✓		✓	Yes
15	Fairfield Main Drain	√	✓		√					Yes

Risk based approach to contaminants

Risk = Likelihood x Consequence

Potential for benefit test = what is the value of mitigating identified risks?

Risk rating and potential for benefit can be used to set priorities for mitigation option investments

Likelihood of impact

		Duration of exposure to contaminants			
		No first Low first Pron first flush Dry weather			
Very high proportion High proportion Moderate proportion Low proportion	3	2	1	1	
	4	3	2	1	
	5	4	3	2	
		5	5	4	3

Consequence of impact

		Distance to sensitive aquatic receptors			
		>1km	500m-1km	250m-500m	<250m
>-	Very Sensitive	3	2	1	1
cal Sen	Sensitive	4	3	2	1
	Tolerant	5	4	3	2
Ē	Not sensitive	5	5	4	3

Evidence based projects for Merri Creek

Description	Estimated Investment	Outcome Addressed	Benefit
Reduction of heavy metal pollution loads and associated toxicants from industrial areas	\$1M	Aquatic Life	High
Identification and rectification of illegal sewer to stormwater connections	\$1M	Public Health (YR &PPB only)	High
Stormwater monitoring and characterisation program to identify key sites for stormwater treatment / diversion to sewer (first flush)	\$2M (mon) \$3M (div)	Aquatic Life, Aesthetics	High
Continue targeted vegetation management / enhancement programs	\$3.5M	Aquatic Life, Aesthetics	High
Mitigate of aesthetic impacts from stormwater	\$2M	Aesthetics	High
Mitigate of aesthetic impacts from WWOs	\$0.5M	Aesthetics	Low / Medium
TOTAL	\$13M		

WITHOUT DATA

YOU'RE JUST ANOTHER PERSON WITH AN OPINION

W. EDWARDS DEMING

Thank you....